Generalization of the Peres criterion for local realism through nonextensive entropy

نویسنده

  • Michel Baranger
چکیده

A bipartite spin-1/2 system having the probabilities 1+3x 4 of being in the Einstein-Podolsky-Rosen entangled state |Ψ−>≡ 1 √ 2 (|↑>A |↓>B−|↓>A |↑>B) and 3(1−x) 4 of being orthogonal, is known to admit a local realistic description if and only if x < 1/3 (Peres criterion). We consider here a more general case where the probabilities of being in the entangled states |Φ±>≡ 1 √ 2 (|↑>A |↑>B ±|↓>A |↓>B) and |Ψ±>≡ 1 2 (|↑>A |↓>B ±|↓>A |↑>B) (Bell basis) are given respectively by 1−x 4 , 1−y 4 , 1−z 4 and 1+x+y+z 4 . Following Abe and Rajagopal, we use the nonextensive entropic form Sq ≡ 1−Trρ q q−1 (q ∈ R; S1= − Tr ρ ln ρ) which has enabled a current generalization of Boltzmann-Gibbs statistical mechanics, and determine the entire region in the (x, y, z) space where local realism is admissible. For instance, in the vicinity of the EPR state, classical realism is possible if and only if x+ y+ z < 1, which recovers Peres’ criterion when x = y = z. In the vicinity of the other three states of the Bell basis, the situation is identical. A critical-phenomenon-like scenario emerges. These results illustrate the computational power of this new nonextensive-quantuminformation procedure. 03.65.Bz, 03.67.-a, 05.20.-y, 05.30.-d Typeset using REVTEX

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonadditive Conditional Entropy and Its Significance for Local Realism

Based on the form invariance of the structures given by Khinchin’s axiomatic foundations of information theory and the pseudoadditivity of the Tsallis entropy indexed by q , the concept of conditional entropy is generalized to the case of nonadditive (nonextensive) composite systems. The proposed nonadditive conditional entropy is classically nonnegative but can be negative in the quantum conte...

متن کامل

Nonextensive triangle equality and other properties of Tsallis relative-entropy minimization

Kullback–Leibler relative-entropy has unique properties in cases involving distributions resulting from relative-entropy minimization. Tsallis relative-entropy is a one-parameter generalization of Kullback–Leibler relative-entropy in the nonextensive thermostatistics. In this paper, we present the properties of Tsallis relative-entropy minimization and present some differences with the classica...

متن کامل

Nonextensive analysis on the local structure entropy of complex networks

The local structure entropy is a new method which is proposed to identify the influential nodes in the complex networks. In this paper a new form of the local structure entropy of the complex networks is proposed based on the Tsallis entropy. The value of the entropic index q will influence the property of the local structure entropy. When the value of q is equal to 0, the nonextensive local st...

متن کامل

A nonextensive entropy approach to solar wind intermittency

The probability distributions (PDFs) of the differences of any physical variable in the intermittent, turbulent interplanetary medium are scale dependent. Strong non-Gaussianity of solar wind fluctuations applies for short time-lag spacecraft observations, corresponding to small-scale spatial separations, whereas for large scales the differences turn into a Gaussian normal distribution. These c...

متن کامل

Nonextensive theory of dark matter and gas density profiles

Pronounced core-halo patterns of dark matter and gas density profiles, observed in relaxed galaxies and clusters, were hitherto fitted by empirical power-laws. On the other hand, similar features are well known from astrophysical plasma environments, subject to long-range interactions, modeled in the context of nonextensive entropy generalization. We link nonextensive statistics to the problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008